
Available online at www.jcpronline.in 

Journal of Current Pharma Research 5 (2), 2015, 1473-1481. 

 

1473 
 

 

Original Article                                                                                      Author Copy                     

 

2D and 3D QSAR using kNN-MFA method of the novel 3, 4-

dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea as an 

antifungal agents. 
 

Ashwini H. Pagare*, Rani S. Kankate, Anwar R. Shaikh. 
Bhujbal Knowledge City, MET‟s Institute of Pharmacy, Adgaon, Nashik-422003, India 

Received 20 January 2015; received in revised form 20 March 2015; accepted 20 March 2015 

Available online 22 March 2015 

 

Abstract 
Quantitative structure–activity relationship (QSAR) analysis for recently synthesized 3,4-

dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea derivatives was studied for their antifungal 

activity. The statistically significant 2D-QSAR models (r
2
 = 0.9759; q

2
 = 0.9314; F test =72.73; r

2
 se 

=5.1472; q
2
 se =8.6750; pred_r

2
 =-0.03094; pred_r

2
se = 40.9144 were developed using molecular 

design suite (VLifeMDS 4.3.1) The study was performed with 23 compounds (data set) using sphere 

exclusion (SE) algorithm, random selection and manual selection methods used for the division of the 

data set into training and test set. Multiple linear regression [MLR] methodology with stepwise (SW) 

forward-backward variable selection method was used for building the QSAR models. The results of 

the 2D-QSAR models were further compared with 3D-QSAR models generated by kNN-MFA, (k-

Nearest Neighbor Molecular Field Analysis) investigating the substitutional requirements for the 

favorable antifungal activity against candida albicans and providing useful information in the 

characterization and differentiation of their binding sites. The results derived may be useful in further 

designing novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea derivatives prior to 

synthesis. 
 

Keywords: 3, 4-dihydropyrimidin-2-(1H) One urea derivatives, Antifungal agents, 2D QSAR, 3D 

QSAR, MLR, kNN-MFA. 

1. Introduction 
          3, 4 – dihydropyrimidin - 2 (1H) - one 

urea derivatives are known to possess simple 

structure with wide variety of pharmacological 

activities such as anti-inflammatory, antifungal, 

antibacterial, calcium channels blockers, 

antioxidant, anticancer etc.[1-5] Biological 

importance of heterocyclic derivatives of N- 

aryl ureas have been reported in the literature. 

Compounds 1– 23 were evaluated for in vitro 

anti-inflammatory, antibacterial and antifungal 

activity against various Gram-positive, Gram-

negative bacteria and fungal strains using agar 

well diffusion method.  
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The compounds 3 and 4 bearing F, Cl group at 

2-position are most potent followed by 

compounds 5, 6, 22 and 23 bearing CF3, OCF3 

and OCH3 at 2- or 4-position. Thus, 

compounds bearing substituent such as CF3, 

OCF3 and OCH3 at 2- or 4-position of the 

terminal benzene ring of urea part found to 

have higher potency than the compounds 

bearing such a groups at 3- or 5 positions or at 

both. Explicitly, 2- or 4-position is the 

favourable site for high antibacterial activity. 

The high potency of 3, 4, 22, and 23 may be 

attributed to the presence of lipophilic or H-

bond acceptor type group‟s placement such as 

F, Cl, CF3, OCF3 and OCH3 at 2- or 4-

positions. This is further supported by the fact 

that the presence of nonpolar lipophilic groups 

such as isopropyl, n-butyl etc. at 4-position, 

compounds 20 and 21, respectively, has no 
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major effect on the activity. Rest of the 

compounds bearing substituent such as F, Cl, 

CF3, OCF3, OCH3 and OPh at position 3 or 4 

or both showed moderate or no activity with 

respect to standard drug against the test 

strains. No activity was observed in case of 

compounds 16–19 up to concentration of 200 

lg/mL against some bacteria and fungi. 

Position 2 and 4 of terminal benzene ring is 

favorable site for high activity. The compounds 

3 and 4 found to be 2.5-fold more potent than 

the standard drug Miconazole, while 22 and 23 

exhibited comparable antifungal activity. 

Similar to the antibacterial activity trend, 

nonpolar lipophilic groups such as isopropyl or 

n-butyl at 4-position, compounds 20 and 21, 

respectively, has no major effect on the 

antifungal activity also[6] Traditional 

Computer-assisted Quantitative Structure–

Activity Relationship (QSAR) studies 

pioneered by C. Hansch et al.1962  [7] have 

been proved to be one of the useful 

approaches for accelerating the drug design 

process [8] which helps to correlate the 

bioactivity of compounds with structural 

descriptors [9]. To gain further insights into the 

structure–activity relationships of these 

derivatives and understand the mechanism of 

their substitutional specificity, we have 

performed 2D and 3D-QSAR on 3,4-

dihydropyrimidin-2(1H)-one urea derivatives of 

N-aryl urea by using multiple linear regression 

methodology (MLR ) and k- Nearest Neighbor 

Molecular Field Analysis (kNN MFA), 

respectively. The significance of the QSAR 

models was evaluated using cross-validation 

tests, randomization tests and external test set 

prediction. The robust 2D/3D-models may be 

useful in further designing new candidates as 

potential antifungal agents prior to synthesis. 

 

2. Materials and Methods  
2.1. Selection of molecules 

Data set of 23 compounds3,4-

dihydropyrimidin-2(1H)-one urea derivatives 

(Table 1) collected from published literature 

[10] were taken for the present QSAR study. 

The antifungal activity data of compounds 

were converted into log p values (MIC values 

µg/mL) to get the linear relationship in 

equation. 

Molecules were rationally divided into the 

training set and test set based on the 

suggestions given by Alexander Tropsha et al. 

[11]. 

2.2. Molecular modeling 

All computational experiments were performed 

using on LENOVO computer having genuine 

Intel Pentium Dual Core Processor and 

Windows XP operating system using the 

software Molecular Design Suite (VlifeMDS 

4.3.1). [12] Structures were drawn using the 

2D draw application and converted to 3D 

structures and subjected to an energy 

minimization and geometry optimization using 

Merck Molecular Force Field, force field and 

charges followed by Austin Model-1 with 

10000 as maximum number of cycles, 0.01 as 

convergence criteria (root mean square 

gradient) and 1.0 as constant (medium‟s 

dielectric constant which is 1 for in vacuo) in 

dielectric properties. The default values of 30.0 

and 10.0 Kcal/mol were used for electrostatic 

and steric energy cut off. 

2.3. 2D-QSAR analysis 

2.3.1. Calculation of descriptors 

Numbers of descriptors were calculated after 

optimization or minimization of the energy of 

the data set molecules. Various types of 

physicochemical descriptors were calculated: 

Individual (Molecular weight, H-Acceptor 

count, H-Donor count, X log P, slog P, SMR, 

Polarisability, etc.), retention index (Chi), 

atomic valence connectivity index (ChiV), Path 

count, Chi chain, ChiV chain, Chain Path 

count, Cluster, Path cluster, Kappa, Element 

count (H, N, C, S count etc.), Distance based 

topological (DistTopo, Connectivity Index, 

Wiener Index, Balaban Index), Estate numbers 

(SsCH3count, SdCH2count, SssCH2count, 

StCH count, etc.), Estate contribution (SsCH3-

index., SdCH2- index, SssCH2-index , StCH 

index), Information theory based (Ipc, Id etc.) 

and Polar surface area. More than 200 

alignment independent descriptors were also 

calculated using the following attributes. A few 

examples are T_2_O_7, T_N_N_5, T_2_2_6, 

T_C_O_1, T_O_Cl_5 etc. The invariable 

descriptors (the descriptors that are constant 

for all the molecules) were removed, as they 

do not contribute to QSAR. 
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2.3.2. Generation of training and test sets: 

In order to evaluate the QSAR model, data set 

was divided into training and test set using 

sphere exclusion, random selection and 

manual selection method. Training set is used 

to develop the QSAR model for which 

biological activity data are known. Test set is 

used to challenge the QSAR model developed 

based on the training set to assess the 

predictive power of the model which is not 

included in model generation. 

Sphere Exclusion method: In this method 

initially data set were divided into training and 

test set using sphere exclusion method. In this 

method dissimilarity value provides an idea to 

handle training and test set size. It needs to be 

adjusted by trial and error until a desired 

division of training and test set is achieved. 

Increase in dissimilarity value results in 

increase in number of molecules in the test 

set. 

Random Selection Method: In order to 

construct and validate the QSAR models, both 

internally and externally, the data sets were 

divided into training [90%-60% (90%, 85%, 

80%, 75%, 70%, 65% and 60%) of total data 

set] and test sets [10%-40% (10%, 15%, 20%, 

30%, 35% and 40%) of total data set] in a 

random manner. 10 trials were run in each 

case. 

Manual data selection method: Data set is 

divided manually into training and test sets on 

the basis of the result obtained in sphere 

exclusion method and random selection 

method. 

2.3.3. Generation of 2D-QSAR models: 

Two dimensional quantitative structure activity 

relationship (2D QSAR) studies by means of 

multiple linear regression (MLR) method was 

performed on a series of 3,4-dihydropyrimidin-

2-(1H)One urea derivatives as antifungal 

agents using software QSAR pro (VLife 

Science).MLR is a method used for modeling 

linear relationship between a dependent 

variable Y (Activity) and independent variable 

X (2D/3D descriptors). MLR is based on least 

squares. The model is fit such that sum-of-

squares of differences of observed and a 

predicted value is minimized. MLR estimates 

values of regression coefficients (r
2
) by 

applying least squares curve fitting method. 

The model creates a relationship in the form of 

a straight line (linear) that best approximates 

all the individual data points. In regression 

analysis, conditional mean of dependant 

variable (Activity) Y depends on (descriptors) 

X. MLR analysis extends this idea to include 

more than one independent variable [13].
 

2.4. 3D-QSAR analysis: 

2.4.1. kNN-MFA 

kNN-MFA is novel methodology, unlike 

conventional QSAR regression methods, this 

methodology can handle nonlinear 

relationships of molecular field descriptors with 

biological activity, thus making it a more 

accurate predictor of biological activity. 

Conventional correlation methods try to 

generate linear relationship with the activity, 

whereas, kNN is inherently non-linear method 

and is better able to explain activity trends. 

The kNN-MFA technique is a conceptually 

simple approach to pattern recognition 

problems. In this method, an unknown pattern 

is classified according to the majority of the 

class memberships of its k nearest neighbors 

in the training set. The nearness is measured 

by an appropriate distance metric (e.g. a 

molecular similarity measure, calculated using 

field interactions of molecular structures). The 

standard kNN method is implemented simply 

as follows: (i) calculate distances between an 

unknown object (u) and all the objects in the 

training set; (ii) select k objects from the 

training set most similar to object u, according 

to the calculated distances, (iii) classify object 

u with the group to which a majority of the k 

objects belong. An optimal k value is selected 

by the optimization through the classification of 

a test set of samples or by the leave-one out 

cross-validation. The variables and optimal k 

values are chosen using different variable 

selection methods as described below. 

kNN-MFA with Simulated Annealing 

Simulated Annealing (SA) is another 

stochastic method for function optimization 

employed in QSAR. Simulated annealing (SA) 

is the simulation of a physical process, 

„annealing‟, which involves heating the system 

to a high temperature and then gradually 

cooling it down to a preset temperature (e.g., 

room temperature). During this process, the 

system samples possible configurations 

distributed according to the Boltzmann 
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distribution so that at equilibrium, low energy 

states are the most populated. 

kNN-MFA with Stepwise (SW) Variable 

Selection 

This method employs a stepwise variable 

selection procedure combined with kNN to 

optimize the number of nearest neighbors (k) 

and the selection of variables from the original 

pool as described in simulated annealing. 

kNN-MFA with Genetic Algorithm 

Genetic algorithms (GA) first described by 

Holland mimic natural evolution by modeling a 

dynamic population of solutions. The members 

of the population, referred to as chromosomes, 

encode the selected features. The encoding 

usually takes form of bit strings with bits 

corresponding to selected features set and 

others cleared. Each chromosome leads to a 

model built using the encoded features. By 

using the training data, the error of the model 

is quantified and serves as a fitness function. 

During the course of evolution, the 

chromosomes are subjected to crossover and 

mutation. By allowing survival and 

reproduction of the fittest chromosomes, the 

algorithm effectively minimizes the error 

function in subsequent generations. 

2.4.2. Creation of interaction energies 

Methyl probe with charge 1 and energy cut-off 

for electrostatic 10 Kcal/mol and for steric 30 

Kcal/mol, dielectric constant 1 and charge type 

Gasteiger-marsili were used to calculate steric 

and electrostatic fields. The fields were 

computed at each lattice intersection of a 

regularly spaced grid of 2.0 A
°
 within defined 

three-dimensional region. 

2.4.3. Generation of training and test sets 

In order to evaluate the QSAR model, data set 

was divided into training and test set using 

sphere exclusion, random selection and 

Manual selection method. Training set is used 

to develop the QSAR model for which 

biological activity data are known. Test set is 

used to challenge the QSAR model developed 

based on the training set to assess the 

predictive power of the model which is not 

included in model generation. 

 

 

 

 

Results and Discussion 
D-QSAR models 

Different sets of 2D-QSAR models were 

generated using the MLR analysis in 

conjunction with stepwise forward-backward 

variable selection method. Different training 

and test set were constructed using sphere 

exclusion, random and manual selection 

method. Training and test set were selected if 

they follow the unicolumn statistics, i.e. 

maximum of the test is less than maximum of 

training set and minimum of the test set is 

greater than of training set, which is 

prerequisite for further QSAR analysis. This 

result shows that the test is interpolative i.e., 

derived from the min-max range of training set. 

The mean and standard deviation of the 

training and test set provides insight to the 

relative difference of mean and point density 

distribution of the two sets. The statistical 

significant 2D-QSARmodels for column “log p 

activity distribution.” The selection of the best 

model is based on the values of r
2
 (squared 

correlation coefficient), q
2 

(cross-validated 

correlation coefficient), pred_r
2
 (predicted 

correlation coefficient for the external test 

set),F (Fisher ratio) reflects the ratio of the 

variance explained by the model and the 

variance due to the error in the regression. 

High values of the F–test indicate that the 

model is statistically significant. r
2
se, q

2
se and 

pred_r
2
se are the standard errors terms for r

2
, 

q
2
and pred_r

2
 respectively. The statistically 

significant 2D-QSAR model is shown as 

follows. 

Test set: 4, 5, 10, 11,13,19,20. 

 -0.5495 (T_T_O_5); + 0.5543(H-Acceptor / 

Saas Count) +0.1528 (T_N_F_6); + 0.1434 

(T_T_O_6) -0.0979 (T_2_T_3) + 22.3512 

Statistics 

[Optimum Components= 4; n= 15; Degree of 

freedom= 9;r
2
 = 0.9759; q

2
= 0.9314; F test= 

72.73; r
2
se= 5.1472; q2se= 8.6750; pred_r

2
= 

80.36. 

In the above QSAR equation, n is the number 

of molecules (Training set) used to derive the 

QSAR model, r
2
 is the squared correlation 

coefficient, q
2
 is the cross-validated correlation 

coefficient, pred_r
2
is the predicted correlation 

coefficient for the external test set, F is the 

Fisher ratio, reflects the ratio of the variance 

explained by the model and the variance due 
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to the error in the regression. High values of 

the F-test indicate that the model is statistically 

significant. r
2
se, q

2
se and pred_r

2
se are the 

standard errors terms for r
2
, q

2
 and pred_r

2
 

(smaller is better). 

Interpretation of the Model: 

2D-QSAR Model 

From equation, 2D-QSAR model explains 

97.56 % (r
2
= 0.9756) of the total variance in 

the training set as well as it has internal (q
2
) 

and external (pred_r
2
) predictive ability of 

80.36 %. The F test shows the statistical 

significance of 99.99 % of the model which 

means that probability of failure of the model is 

1 in 10000. In addition, the randomization test 

shows confidence of 99.9999 (Alpha Rand 

Pred R^2 = 0.00000) that the generated model 

is not random and hence chosen as the QSAR 

model. From QSAR model , negative 

coefficient value of T_T_O_5 [count of number 

of double bonded atoms (i.e. any double 

bonded atom, T_2) separated from carbon 

atom by 5 bonds],T_T_O_6 [count of any bond 

separated from any atom by 6 bonds] on the 

biological activity indicated that lower values 

leads to good antifungal  activity while higher 

value leads to reduced antifungal activity while 

positive coefficient value of H-Acceptor/Saas 

Count [number of hydrogen bond acceptor 

atoms], T_T_0_5 [count of any atom 

(represented as T) separated from O atom by 

5 bonds], T_T_O_5 [count of number of 

double bonded atoms (i.e. any double bonded 

atom, T_2) separated from carbon atom by 5 

bonds], on the antifungal activity indicated that 

higher value leads to better antifungal activity 

whereas lower value leads to decrease 

antifungal activity. Contribution chart for model 

is represented in Figure 2 reveals that the 

descriptors H-Acceptor / Saas Count, 

T_T_O_6, contributing 40.07 %, 25.26 % 

respectively. Three more descriptors T_T_0_5 

and T_N_F_6 and T_2_T_3 are contributing 

inversely 23.65 %, 9.79 %, and 2.56% 

respectively to biological activity. 

 

 
 

Fig. 2. Contribution chart for 2D-QSAR model 

showing contribution of different descriptors. 

 

Data fitness plot for 2D- QSAR model is 

shown in Figure 3. The plot of observed vs 

predicted activity provides an idea about how 

well the model was trained and how well it 

predicts the activity of external test set. 

 

 
 

Fig. 3. Data fitness plot for 2D-QSAR model. 

 

The graph of observed vs. predicted activity of 

training and test sets for 2D-QSAR model is 

shown in Figure 4.the2D-QSAR model is able 

to predict the activity of training set quite well 

as well as external test set, providing 

confidence of model. Results of the observed 

and predicted antifungal activity are shown in 

Table 4. 
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Training set 

 
Test set 

 
Fig. 4. Graph between actual and predicted 

biological activity of test and training set for 

2D-QSAR model. 

 

 

3.2. 3D-QSAR model 

kNN-MFA samples the steric and electrostatic 

fields surrounding a set of ligands and 

constructs 3D-QSAR models by correlating 

these 3D fields with the corresponding 

biological activities. The statistical significant 

results for 3D-QSAR models are given in 

Table 3. 

The selection of the best model is based on 

the values of q
2
 (internal predictive ability of 

the model) and that ofpred_r
2
 (the ability of the 

model to predict the activity of external test 

set). 

 

3D-QSAR model: Test set: 

4,5,10,11,13,19,20. 

E_7952 (0.0702 0.0745); S_246 (-0.1301 -

0.1222) S_7841 (-0.0179 -0.0172) 

Statistics: 

[kNN= 2; n= 15; Degree of freedom= 12; q
2
= 

0.8032; q
2
_se= 13.4025; pred_r

2
= 0.5391; 

pred_r
2
se= 37.0345. 

The model 3D-QSAR explains values of k (2), 

q
2
(0.8032), pred_r

2
(0.5391), q

2
_se (13.4025), 

and pred_r
2
se (37.0345) prove that QSAR 

equation so obtained is statistically significant 

and shows the predictive power of the model 

is 70.94% (internal validation). Table 4 

represents the predicted antifungal activity by 

the model 3D-QSAR for training and test set. 

The data fitness plot for model 3D-QSAR is 

shown in Figure 5. The plot of observed vs. 

predicted activity provides an idea about how 

well the model was trained and how well it 

predicts the activity of the external test set. 

 

 

 
Fig. 5. Data fitness plot for model 3D-QSAR. 

 

 

From figure 6, it can be seen that the model is 

able to predict the activity of the training set 

quiet well as well as external test set, 

providing confidence of the model. 

Training set 

 
Test set 

 
Fig. 6. Graph between actual and predicted 

biological activity of training and test set for 

Model-3D-QSAR. 
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Result plot in which 3D-alignment of molecules 

with the important steric and electrostatic 

points contributing in the model 3D-QSAR with 

ranges of values shown in the parenthesis 

represented in Figure 7. It shows the relative 

position and ranges of the corresponding 

important steric and electrostatic fields in the 

model provides guideline for new molecule 

design as follows- 

(a) Electrostatic field, E_710 (0.0702, 0.0745) 

has positive range indicates that positive 

electrostatic potential is favorable for increase 

in the activity and hence less electronegative 

substituent group is preferred in that region. 

(b) Steric filed, S_389 (-0.1301, -0.1222) has 

negative range indicates that negative steric 

potential is favorable for increase in the activity 

and hence less bulky substituent group is 

preferred in that region. 

 

 
Fig. 7. 3D-alignment of molecules (Ball and 

stick model) with the important steric and 

electrostatic points contributing model 3D-

QSAR with ranges of values shown in 

parenthesis. 

 

 
Fig. 8. 3D-alignment of molecules (Stick 

model) with the important steric and 

electrostatic points contributing model 3D-

QSAR with ranges of values shown in 

parenthesis. 

Conclusion 
Statistically significant 2D/3D-QSAR models 

were generated with the purpose of deriving 

structural requirements for the antifungal 

activities of some novel 3,4-dihydropyrimidin-

2(1H)-one urea derivatives of N-aryl urea 

against candida albicans. The validation of 2D-

QSAR models was done by the cross-

validation test, randomization tests and 

external test set prediction. The best 2D-

QSAR models indicate that the descriptors of 

H-Acceptor Count, T_T_O_5, T_T_O_6, and 

T_2_N_6 influenced the antifungal activity. 

kNN-MFA investigated the substitutional 

requirements for the receptor-drug interaction 

and constructed the best 3D-QSAR models by 

PLSR method, providing useful information in 

characterization and differentiation of their 

binding sites. In conclusion, the information 

provided by the robust 2D/3D-QSAR models 

use for the design of new molecules and 

hence, this method is expected to provide a 

good alternative for the drug design. 
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Table 1. Substitutions in Structures and Biological activity of 3,4 dihydropyrimidin-2(1H)-one urea 
derivatives. 

 

 
COMPOUNDS 

 
-R Substitutions 

ANTIFUNGAL 
ACTIVITY AGAINST 

CANDIDA 
ALBICANS (MIC 
values µg/mL) 

 
 

Log P 
values 

1 1-F 30 1.475 

2 1-Cl 55 1.744 

3 2-F 10 1.030 

4 2-Cl 10 1.030 

5 2-CF3 25 1.393 

6 2-OCF3 15 1.172 

7 2-OC6H5 40 1.604 

8 2-F , 6-CH3 50 1.695 

9 2-F , 6-CF3 55 1.746 

10 2-Cl , 6-CH3 40 1.604 

11 2-Cl , 6-CF3 60 1.775 

12 2-Cl , 5-CF3 60 1.775 

13 2-Cl , 4-CF3 35 1.541 

14 2-Cl , 6-F 40 1.603 

15 3-CF3 25 1.394 

16 3-Cl , 4-F 80 1.905 

17 3,5-F 95 1.975 

18 3,4-CH3 95 1.978 

19 4-F , 3-CH3 80 1.9095 

20 4-isopropyl 90 1.956 

21 4-butyl 5 0.692 

22 4-CF3 15 1.174 

23 4-OCH3 10 1.030 
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Table 2. Statistical evaluation of 2D QSAR models for “log p activity distribution”. 

 

MODEL r 
2
 q 

2
 r 

2
 se q 

2
 se Pred r_ 

2
 F test 

2D QSAR 0.9759 0.9314 5.1472 8.6750 40.9144 72.73 

 
 
 

Table 3. Statistical evaluation of 3D-QSAR model. 
 

Model 
k-Nearest 
Neighbor 

n 
Degree of 
freedom 

q
2
 q

2
_se Pred r

2
 

Pred 
r

2
_se 

3D-QSAR 
 
2 

 
15 

 
12 

 
0.8032 

 
13.4025 

 
0.5391 

 
37.0345 

 
 
 

Table 4. Actual and predicted activities for 23 compounds based on the best 2D/3D-QSAR models. 
 

COMPOUNDS ACTUAL VALUES 
(log P) 

PREDICTED FOR 2D 
QSAR MODEL 

PREDICTED FOR 
3D QSAR MODEL 

1 1.475 0.945 0.864 
2 1.744 0.978 0.984 
3 1.030 0.856 0.7778 
4 1.030 0.876 0.943 
5 1.393 0.908 0.982 
6 1.172 0.943 0.880 
7 1.604 0.934 0.876 
8 1.695 0.967 0.916 
9 1.746 0.977 0.9345 

10 1.604 0.985 0.9823 
11 1.775 0.980 0.972 
12 1.775 0.981 0.8890 
13 1.541 0.948 0.984 
14 1.603 0.935 0.923 
15 1.394 0.923 0.965 
16 1.905 1.005 0.927 
17 1.975 1.0704 0.988 
18 1.978 1.678 0.908 
19 1.9095 0.967 0.887 
20 1.956 1.865 0.986 
21 0.692 0.676 0.657 
22 1.174 0.987 0.986 
23 1.030 0.957 0.969 
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